$$CH_3$$

$$CH_3$$

$$N$$

$$t-C_4H_9$$

$$S$$

$$N-SO_2C_6H_4R-p$$

	Formula		N, %		
R .		Mp, °C	found	calcu- lated	
Cl H CH ₃ CH ₃ CONH	$\begin{array}{c} C_{15}H_{19}ClN_2O_2S_2\\ C_{15}H_{20}N_2O_2S_2\\ C_{16}H_{22}N_2O_2S_2\\ C_{17}H_{23}N_3O_3S_2 \end{array}$	147—147.5 174—175.5 158.5—159.5 189—190	8.01 9.16 8.05 11.10	7.79 8.63 8.27 11.62	

Found; N 16.33%, MR_D 51.8. Calculated for $C_8H_{14}N_2S$. N 16.45%; MR_D 50.9. The refraction of the C-S bond was assumed to be 4.61 [4]. The picrate was prepared by precipitating the base with an ethanol solution of picric acid. Yellow fibrous needles, mp 167.5° (ex AcOH). Found; N 17.25%. Calculated for $C_8H_{14}N_2S \cdot C_6H_3N_3O_7$. N 17.54%.

Arylsulfonylation of IIIa gave, similarly, 3,4-dimethylthiazolon-2-(p-toluenesulfonyl)imide (Table 1).

- 3, 4-Dimethyl-5-isopropylthiazolon-2-(p-aminobenzenesulfonyl)-imide (IIIa) Ac-p-NH₂C₆H₄SO₂). Prepared by 4 hr refluxing of 3, 4-dimethyl-5-isopropylthiazolon-2-(p-acetamidobenzenesulfonyl)imide with 15% HCl, followed by neutralization with NH₄OH. Brownish leaflets, mp 209-210°. Found: N 12.65%. Calculated for $C_{14}H_{19}N_3O_2S_2$. 12.91%.
- 3, 4-Dimethyl-5-isopropylthiazolon-2-acetimide (IIIa, Ac-MeCHQ). Prepared by boiling the base with acetic anhydride. Colorless leaflets, mp $117-118^\circ$ (ex EtOH). Found: N 13.10%. Calculated for $C_{10}H_{16}N_2OS$. N 13.19%.
- 3, 4-Dimethyl-5-isopropylthiazolon-2-benzoylimide (IIIa, Ac- C_6H_8CO). Prepared by boiling the base with benzoyl chloride and NaHCO3 in acetone. Greenish needles, mp 129-130° (ex EtOH). Found: 10.05%. Calculated for $C_{15}H_{18}N_2OS.N$ 10.21%.
- 3, 4-Dimethyl-5-tert-butylthiazolon-2-imide (IIb). 6.4 g (0.05 mole) I was dissolved in 100 ml 85% $\rm H_2SO_4$, and 5.5 g (0.075 mole) tert-BuOH added gradually. After 24 hr the products were poured onto ice, and worked up as described for the isopropyl homolog. Yield 5.5 g (60%). Straw colored oil, bp 130–132° (3–4 mm); n_D^{20} 1.5500; d_4^{20} 1.053. Found: N 15.31%. MR_D 55.76. Calculated for $\rm C_0H_{16}N_2S$. N 15.25%. MR_D 55.54. Picrate, colorless fibrous needles, mp 190–191° (ex water). Found: N 16.70%. Calculated for $\rm C_0H_{16}N_2S \cdot C_0H_3N_3O_7$: N 7.79%.
- 3, 4-Dimethyl-5-tert-butylthiazolon-2-acetimide (IIIb, Ac-MeCO). Prepared by boiling the base with Ac $_2$ O. Minute colorless needles, mp

120° (ex EtOH). Found: N 12.09%. Calculated for $C_{11}H_{18}N_2^{\circ}OS$. N 12.38%.

- 3, 4-Dimethyl-5-tert-butylthiazolon-2-benzoylimide) (IIIb, Ac-C₆H₅CO). Minute colorless needles, mp 140.5-141.5° (ex EtOH). Found: N 9.72%. Calculated for $C_{16}H_{20}N_2OS$. N 9.72%.
- 3, 4-Dimethyl-5-tert-butylthiazolon-2-(o-hydroxybenzoyl)imide (IIIb, Ac-o-HOC₆H₄CO). Prepared by heating the base with salol in an oil-bath (4 hr, 170°), after which the phenol was steam-distilled off, and the residue recrystallized from AcOH. Minute colorless crystals, triangles under a microscope, mp 196-197°. Pale-green fluorescence in UV light. Found: N 9.02%. Calculated for $C_{16}H_{20}N_2O_2S.N$ 9.20%.

REFERENCES

- S. I. Burmistrov and V. A. Krasovskii, ZhOKh, 34, 685, 1964.
- S. I. Burmistrov and V. A. Krasovskii, ZhOKh, 34, 3822, 1964.
- 3. W. Wilson and R. Woodger, J. Chem. Soc., 2943, 1955.
- 4. B. V. Ioffe, Refractometric Methods in Chemistry [in Russian], Goskhimizdat, Leningrad, 328, 1960.
- 5. V. Λ. Krasovskii and S. I. Burmistrov, KhGS [Chemistry of Heterocyclic Compounds], 157, 1967.

4 January 1965

Dnepropetrovsk Institute of Chemistry and Technology

SYNTHESIS OF CHLORINATED 1,3-DIOXANES

V. I. Isagulyants and V. R. Melikyan

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 1, pp. 157-158, 1967

UDC 547.841

A new synthesis of chlorine-substituted 1, 3-dioxanes is effected from methylallyl chloride and isocrotyl chloride by condensing them with paraformaldehyde in the presence of KU-2 cation-exchange resin.

One of the present authors first showed that the Prins reaction could be effected in the presence of a

cation-exchange resin [1]. It was of interest to investigate the reaction using other olefins, particularly the chlorine-substituted olefins, methylallyl chloride and isocrotyl chloride. The synthesis of chlorine-substituted 1,3-dioxanes from these olefins had been carried out using mineral acids as the catalyst.

punc	Bp, ℃	d ₄ ²⁰	20	MR _D			CI, %
Comp	Bp, °C (pressure, mm)		n _D	found	calcu- lated	Formula	found calcu-
I II III VI	53—54 (5) 105—106 (3) 58.5—59.5 (3) 95—97 (2)	1.170 1.200 1.159 1.195	1.4720 1.4850 1.4740 1.4840		35.912 33.121 35.912 33.143	C ₆ H ₁₁ ClO ₂ C ₅ H ₁₁ ClO ₂	23.23 23.58 60

In the present paper, reaction of methylallyl chloride (bp 68°-69°; d₄²⁰ 0.918; n_D²⁰ 1.4240) and isocrotyl chloride with paraformaldehyde (95%), using the cation exchange resin KU-2 as catalyst, was investigated. The procedure was as follows. A mixture of 15 g paraform, 50 ml elefin, 20 ml dichloroethane, and 20 g KU-2, was refluxed for 8-9 hr. After cooling the catalyst was filtered off, unreacted olefin and dichloroethane distilled off, and finally the reaction product vacuum-distilled over in a current of inert gas. Reaction of methylallyl chloride with paraform gave 4-chloromethyl-4-methyl-1,3-dioxane (I) and 3-chloromethyl-1,3-butanediol (II). Reaction of isocrotyl chloride with paraform gave 4,4-dimethyl-5-chloro-1,3-dioxane (III), and 3-methyl-2-chloro-1,3-butane-

diol (IV) (table). The physical constants of I-IV corthose given in the literature [2, 3].

In every case formation of $6-7~\mathrm{g}$ resin was observed.

REFERENCES

- 1. V. I. Isagulyants and M. G. Safarov, Author's certificate 547841, 1963.
- 2. E. Erundale and L. A. Mikeska, U.S. patent no. 2296375, 1942.
- 3. Hideyo Noda, Toshio Takino, and Kenichi Fukui, Kogyo Kagaki Zasshi, 66 (3), 348, 1963.
- 13 May 1965 Gubkin Moscow Institute of Petroleum Chemistry and Gas Industry

STRUCTURE OF AZAINDAN-1, 3-DIONES IN SOLUTION

I. V. Turovskii, Ya. Ya. Linaberg, and O. Ya. Neiland Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 1, pp. 158-160, 1967

It is shown spectrophotometrically that 2-phenylazaindan-1, 3-diones* can give in solution a cation, a dipolar ion and an anion, and the protolysis constants of the forms of 2-phenyl-4-azaindan-1, 3-dione and 2-phenyl-5-azaindan-1, 3-dione are found.

L. Neiland and G. Vanag presented equilibrium equations for 2-phenyl-4-azaindan-1,3-dione (I), 2-phenyl-5-azaindan-1,3-dione (II), and the corresponding N-methyl derivatives of these azaindan-1,3-diones (III, IV) in solution [1]. For solutions of I and II, in the case of acid solution existence of equilibrium mixtures of N-protonated enol (H_2E^+) and dipolar form (HB) is postulated, and in neutral or alkaline solution, existence of a mixture of dipolar form and anion (A^-) .

Solutions of III and IV consist of an equilibrium mixture of 2 forms, cation with enol structure HE⁺, and dipolar ion (B):

$$CH_3N_+ \longrightarrow OH \qquad C_6H_5$$

$$H_3C \longrightarrow OH_5$$

$$H_3C \longrightarrow OH_5$$

$$H_4^+ \longrightarrow OH_5$$

$$O_{0}^* \longrightarrow OH_5$$

$$O_{0}$$

The Czechoslovakian workers P. Hrnčiar and D. Zacharova [2], having recommended use of II as an acid-base indicator with a color changing range of

^{*}It is important to note that the name azaindan-1,3-dione is provisional, as all the compounds studied exist in different tautomeric forms.